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Numerical Simulation of the Droplet Formation
in a Cross—Junction Microchannel Using
the Lattice Boltzmann Method

Zilu Li, Jinfen Kang, Jae Hyun Park, Yong Kweon Suh*
Department of Mechanical Engineering, Dong- A University,
840 Hadan-dong, Saha-gu, Busan 604-714, Korea

This study describes the numerical simulation of two-dimensional droplet formation and the
following motion by using the Lattice Boltzmann Method (LBM) with the phase field equation.
The free energy model is used to treat the interfacial force and the deformation of a binary fluid

system, drawn into a cross—junction microchannel. While one fluid is introduced through the

central inlet channel, the other fluid is drawn into the main channel through the two vertical

inlet channels. Due to the effect of surface tension on the interface between the two fluids, the

droplets of the first fluid are formed near the cross—junction. The aim in this investigation is to

examine the applicability of LBM to the numerical analysis of the droplet formation and its

motion in the microchannel. It was found from comparison with the experimentally visualized

patterns that LBM with the free energy model can reproduce the droplet formation successfully.

However because of the stability problem which is intrinsic for high surface-tension cases, it

requires a very long computational time. This issue is to be resolved in the future.
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Nomenclature

¢ . Reference velocity

E : Error

e . Discrete particle velocity

F  Free-energy function

f:  Distribution function of the total density

!

. Distribution function of the total density
after the collision process

g:; . Distribution function of the density differ-
ence

g; . Distribution function of the density differ-
ence after the collision process

Pap . Pressure tensor

At Time step
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u . Fluid velocity

Un : Maximum velocity at the horizontal inlet
u; - Normalized velocity

u; . Normalized exact solution

Vin © Maximum velocity at the vertical inlet
Ax  Space step

Greek letters

I . Mobility coefficient of the fluids
Ay . Chemical potential difference

& [ lInterfacial width

o . Total density of both fluids

©0a . Density of fluid A

©O» . Density of fluid B

0¢ . Reference density (dimensional)
o . Surface tension at the interface

v . Kinematic viscosity of both fluids
¢ . Density difference between fluid A and B

Superscripts

* . Dimensional variable

eq . Equilibrium term
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Subscripts

a . Fluid A

b Fluid B

7 . Link number
in : Inlet

1. Introduction

Recently, the Lattice Boltzmann Method (LBM)
has rapidly evolved into a self-standing research
subject within the theoretical framework of sta-
tistical mechanics. It was developed as a spin-off
of lattice gas cellular automata and has become
the most noticeable discrete kinetic theory (Succi,
2001). LBM is different from the other conven-
tional methods, which are mainly based on dis-
cretization of macroscopic continuum equations,
i.e., the continuity and Navier-Stokes equations.
LBM is resulted from microscopic models and
macroscopic kinetic equations. Thereby, it incor-
porates the essential physics of microscopic and
macroscopic process. The averaged properties of
the macroscopic fluids, such as density and ve-
locity, are the collective result of many particle
behaviors in the lattice system.

During the last decade, LBM has been devel-
oped significantly and it is now considered as
an alternative and versatile numerical simulation
method in computational fluid dynamics. Variety
of flow regimes, including unsteady flows, phase
separation, evaporation, condensation, cavitations,
solute/heat transport, buoyancy and interactions
with surfaces have been realized by LBM. The
wide applications of LBM arise from the follow-
ing fundamental advantages (Sukop, 2006):

(1) LBM is free from the pressure equation,

(2) the programming is very simple,

(3) quite suitable for the parallel computation,

(4) the flows involving complex boundaries
and interfacial phenomena can be easily treated.

In the present work, the LBM is used as the
numerical tool to study the droplet formation and
its motion in a cross—junction microchannel. The
reason for selecting the microchannel as the ap-
plication area is due to the fact that droplets have
been used by many experimental investigators for

chemical reaction of sample fluids in micro-dev-
ices. Besides, in micro scales the dominant effect
of the surface tension makes the droplet shapes
much simpler than in the macro scales, which in
turn permits the currently available computer ca-
pacity to produce reliable data concerning the
droplet behavior.

The free energy model of LBM is employed
here, which was first proposed by Orlandini et
al.(1995) and Swift et al.(1996). They have used
this model to analyze two phase flows in order to
implement the interfacial force and to track the
interface deformation of a binary fluid system.
Simulation of the formation, motion, deformation
and breakup of droplets in a channel is a big chal-
lenge which can be handled with the free energy
model of LBM. Problems of the multiphase fluid
motion have been simulated more frequently by
the ‘color’ model and the ‘local interaction’ model,
otherwise called as the ‘Shan and Chen’ model
(Gunstensen et al., 1991 ; Shan and Chen, 1993 ;
Orlandini et al., 1995; Swift et al., 1996). Free
energy model have been employed by very few
researchers in the past for solving the problem of
the motion of a binary immiscible fluid. The
major advantage of this model is the correspond-
ence between variables used for the simulation
and the physical quantities, whereas both the color
model and local interaction model of LBM lack a
clear relation to classical thermodynamics..

The following section describes the LBM and
the free energy model in sufficient detail. The
computational model description is given in Sec.
3. A computer code is developed based on the free
energy model of LBM to analyze the present
problem. The numerical stability and accuracy of
the present model is elaborated in Sec. 4. The
results obtained using the computer code devel-
oped is presented in Sec. 5, which is followed by
conclusions in Sec. 6.

2. Governing Equations

In this study, a binary fluid is considered with
components A and B. Both fluids are assumed to
have the same density po* for convenience (e.g.,
water and oil). The two fluid components are
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also assumed to be immiscible in principle. But,
for the effective numerical computation slight mis-
cibility should be permitted, especially at the in-
terface between the two components. This means
that an infinitesimal fluid blob is thought to be
composed of two components with the partial
density p; and p} respectively. The total density
is then given by o* =4+ 0% and the density dif-
ference ¢*=p;—p% serves as a phase field. The
latter is also called the ‘order parameter’. These
variables are non-dimensionalized by a certain
reference density, o5. In the incompressible fluid
limit, =1 for the case when the fluid is locally
composed of the A fluid only, whereas, p=—1
for the case of the B fluid only. Two distribution
functions f;(r,t) and g;(r,¢) are used to de-
scribe the population of the dimensionless total
density o and the dimensionless density difference
(respectively) on each of the 7 links of the two-
dimensional D2Q9 lattice shown in Fig. 1 (Suh
and Kang, 2006). The evolution of both distribu-
tion functions are governed by the single relaxa-
tion time Boltzmann equations of BGK type:

filr+eAt, t+At) —f:(r,t)

——Liatnn -0 M
gi(r+eAt, t+At) —g:(r,t)

=—%¢[gi(r, t)—gfi(r,t)] @)

Here 7, and 7, are independent relaxation para-
meters, and f#(r,¢) and gf(r,¢) are local equi-
librium distribution functions along the link 7
at the position r and at the time, #. Here all the
variables are dimensionless and measured in terms
of the lattice units. That is, the spatial coordinates

6 2 5
3 0 1
7 4 2

Fig. 1 The D2Q9 (2D with 9 velocity) lattice

and the physical lengths are scaled by the lattice
size Ax*, the time by the time step At*, the ve-
locities by the reference velocity c¢*=Ax*/At*
and the distribution functions by the reference
density p5. Accordingly, the dimensionless time
step becomes Af=1.

The velocity vector e; is determined in such way
that the particle arrives at the other end of the link
¢ after a unit time step. For instance, e;=(1,0),
es=(1,1), es=(—1,1), etc. The distribution func-
tions contribute to the total density o, fluid mo-
mentum pu and density difference ¢ through the
following equations :

o= /=21, ©
¢=ggf"=g)gz (4)

8 8
puzl;})ff"ei:;)fiei (5>

In order to obtain the continuum equations
pertinent to a binary fluid mixture, we need to
derive the higher moments of ff(r,¢) and gf?
(r,t) as follows.

8
gff"eiaemZPaﬂeruaup (6)
8
218 eu=¢Ua (7)
8
ggf" =1 ApSus+ puauts (8)

Here the subscript @ and /3 denote the compo-
nents along the x and y directions (respectively),
P.; is the pressure tensor, Ay is the chemical
potential difference between the two fluid com-
ponents and I is a coefficient related to the mo-
bility of the fluid. The formula of the local equi-
librium distribution functions f#?(r,¢) and gf?
(r,¢) which can be derived from these relations
are listed in Appendix A for completeness (Orlandini
et al., 1995 ; Swift et al., 1996 ; Xu et al., 2003 and
2004) .

Following Xu et al.(2003), we introduce the
free—energy function, defined as

F=[ar|omo+d e+l o +5w9?] )

This is used to implement the surface-tension
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effect as well as to control the rate of the phase
segregation. The first term in the integrand gives
rise to a positive background pressure and does
not affect the phase behavior. The other terms
having ¢ are needed for the phase separation to
take place. The parameter b is always positive,
but a negative value must be chosen for g, so that
it leads to the mixture’s segregation (Xu et al.,
2003). Further, we set b=—g¢ so that the equi-
librium values for the order parameter become the
predetermined ones (p==1).

By performing the one-dimensional analysis it
can be shown that the dimensionless surface ten-
sion is given by

o= _3?)& J—2ax (10)

and an interfacial width by

g2,/ 25 (1)

The relation between the dimensional and non-
dimensional surface tension parameters is elabo-
rated in Appendix A. The chemical potential dif-
ference used in equations (A13) and (A17) in the
Appendix is then given by

Au:%:cw—l- bp*— ki (12)

and the pressure tensor, P,s appearing in Eqn. (6)
takes the form

Popg=100ap~t 0290 (13)
where

1l a >, 3b 4+ < n K 2
b=7ot5 ¢+ ¢ —kpVie—5-(Vo)* (14)

The dimensionless kinematic viscosity v is given
by

- 22’6—1 (15)

Two types of the boundary conditions are ap-
plied in this simulation. At the inlet and on the
solid walls, the bounce-back boundary condition
is applied, whereas at the outlet the extrapola-
tion schemes are used. On the solid walls of the
channel, where the no-slip and impermeable res-
trictions are to be satisfied, the bounce-back
boundary conditions are used. Bounce-back means

that, when a particle distribution streams to a
wall node, the particle distribution scatters back
to the same node from which it came. For in-
stance, when the boundary wall is horizontal and
is located just at the mid position between the
fluid and solid nodes as shown in Fig. 2, the
distribution function at the fluid node along the
link 4 after the collision process is ]?4(rf, t), and
this is to be transmitted to the solid node after
the streaming process. In the streaming process,
the same solid node must in turn transmit the
function f2(rs,¢) to the fluid node. In this case,
Falre,t) =f4(re, t) is set, so that the mass as well
as the momentum should be in principle con-
served. In general, this can be written as follows :

fa (rot)=Ffa(rt) (16)

where @ denotes the direction opposite to a.

The boundary conditions at the three inlets are
also treated by using the bounce-back scheme.
Parabolic profile is applied for all the inlet ve-
locities. For instance, at the inlet shown in Fig. 3,
we use the following formula.

4~ Fluid
nodes

-1 Boundary

Solid
nodes

Fig. 2 Schematic for illustrating the bounce-back
boundary condition

/',

e
. o

Inflow Inlet Fluid
fluid  boundary nodes
nodes

Fig. 3 Schematic for illustrating the inflow
boundary condition
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J?& (Fin, 8) :]?a“‘f, t) +6WeOin€a Uin (17)
Gz (P, t) =8a(re, t) +6wopmes un  (18)

where w, is the weighting factor (Yu et al., 2003 ;
Qian, 2003) Here o1 is the density of the inlet
fluid, which is taken to be unity.

At the outlet, the Neumann boundary condi-
tion is applied. At every link, the first-order ex-
trapolation scheme for £ is given by (Nourgaliev
et al., 2003)

fa(ro,t)=Fa(rst) (19)
and the second-order extrapolation for g,
§a<ro,t) :2g~a<rf5t> _§a<rff,f> (20>

are used for this purpose (Yuan, 2005). Here the
subscript ff denotes the node one more step
upstream of the node f.

3. Model Description

In order to study the droplet dynamics of the
binary fluid, a cross—junction channel is consid-
ered in the micro scale having three inlets and one
outlet as shown in Fig. 4. A similar setup is
employed by Kim et al.(2004), who conducted
flow visualization experiment and reported the
droplet generation process as well as the velocity
measurement around the droplets. The width of
the horizontal (main) channel is set as 200 um
and that of the vertical channel as 100 um. The
fluid component A is injected through the hori-
zontal channel inlet with a parabolic profile with
the maximum velocity Up. The fluid component
B is admitted from two vertical-channel inlets with
the maximum velocity Vin. The ratio of the two
velocity magnitudes, Vin/Un is fixed as 6. Since
the flow rate of the fluid A is 6 times smaller than
that of B, the droplet is expected to be composed
of the A fluid only.

For the purpose of computational convenience,
the channel is divided into three blocks as shown
in Fig. 5. Uniform Cartesian grids are built with-
in each block. The actual number of grids along
each direction is also indicated in Fig. 5. Cal-
culation is performed in each region separately.
After that, data are exchanged with each other at

[T

4l -
- L
100 um
Fluid A T
200 |:">
¢ 100m
4l -
el Ll
ﬁ}‘luid B
Fig. 4 Cross-junction microchannel model
124 1
49 2
124 3

24 499
649

Fig. 5 Mesh setup of the cross—junction micro
channel

the overlapped nodes which are necessary for the
streaming step and for calculation of the deriva-
tives.

The parameters involved in the present simu-
lation are @, b, k,I", Ui, Vin, and the channel ge-
ometry. Initially we set —a=>b=x and change &
to control the surface tension. The inlet velocities
at the centerline of each channel are fixed as
Un=0.014 and 14i,=0.084.

The density of the two fluid components at the
inlet are set as pa=p,=1.0

4. Numerical Stability
and Accuracy

After several test runs, it was found that the
numerical scheme reveals a stability problem. The
stability of the scheme depends on the values of
7. I'and x. Figures 6(a) to 6(c) show the stabi-
lity chart each with one among these three para-
meters fixed. It can be seen from Fig. 6(a) that
there is the upper limit of I" (x3.5) beyond which
the scheme becomes unstable. The limit value is
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Fig. 6 Stability charts for the three parameter (z,I",x) combinations: (a) I"vs
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slowly decreasing as 7 is increased. It also shows
that the scheme fails to produce the converged
solutions at about 7<0.7. Figure 6(b) implies
that the upper limit of x is continuously de-
creasing as I is increased. Figure 6(c) exhibits
the weak dependence of the upper limit of « on
7. All of these plots are useful in determining the
parameter values for use in the actual numerical
experiments.

The numerical accuracy of the solutions ob-
tained by the developed code is also rigorously
checked. The channel geometry (and so the num-
ber of grids in each dimension) is fixed as shown
in Fig. 7. The value of 7y only needs to be changed
for different number of grids.

The standard velocity field used in the accuracy
analysis is the parabolic velocity profile (which is
the exact solution for the case of the fully-devel-
oped simple channel flow). The numerical solu-
tion for the purpose of comparison is taken from
the velocity profile at the cross section x="7#ny,
where the flow is almost fully developed. The
Reynolds number value is fixed as 1 and the same
fluid is assumed to enter through all the three
inlets for this test.

The error value is defined as

ny

2 (a—uy)?/ ny

J=1

E= (21)
where #; is the normalized velocity value obtain-
ed numerically and w; is the normalized exact
solution ;

2j—(ny+1) T

~ (22)
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\
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~
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Fig. 7 Set-up of the channel geometry (and so the
the grid system used in the study) on the
numerical accuracy

//
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n

Fig. 8 Numerical accuracy of the present code

The numerical error E obtained in this way is
plotted with four different 7, values (7,=23, 31,
51 and 71), and under four different relaxation
times (7=0.6, 0.8, 1 and 1.5) as shown in Fig. 8.



168 Zilu Li, Jinfen Kang, Jae Hyun Park and Yong Kweon Suh

From this figure it can be understood that the
present numerical scheme assures the 2™ order

accuracy.

5. Numerical Results

The numerical experiments were conducted with
the same grid system and boundary conditions
that are used for the stability test. The relation-
ship —a=b=k, ,=1, and the density value,
0a=pp»=1.0 are fixed in this simulation. The
density difference, @, is plotted to depict the drop-
let formation and its movement.

The initial condition for ¢ is given in Fig. 9.
The area in grey indicates fluid A, and that in
black fluid B. The standard parameter values,
otherwise stated in the following analysis, are ['=
0.3, —a=b=k=0.04, ,=1,=1.67, U;n=0.000652,
Vin=6Uin=0.003912. For this case, the value of
Reynolds number is maintained as 0.58 and the
time step (A#) as unity. The maximum time limit,
T is set as 2500, for convenience.

The processes of generation and separation of
the droplets are shown in Fig. 10. It can be un-
derstood that, under this condition, fluid A is
separated leading to a series of uniform array of
droplets. The droplets move with surrounding
fluid B without being mixed.

To investigate the methods to control the phe-
nomenon of droplet formation in the cross—junc-
tion microchannel, a series of simulations with
three different values of the mobility (I'=0.01,
0.1 and 0.3) and two Reynolds number values
(Re=0.29 and 0.58) are carried out. The numer-
ical results obtained are shown in Fig. 11. With
larger value of I', the droplet becomes more round
in the shape (Fig. 11). At higher Reynolds num-

Fig. 9 Initial distribution of ¢ in the cross—junction

channel

ber values, the droplet separation is expected to
be more difficult. Accordingly, the droplets in the
lower group of figures in Fig. 11 are smaller than
those in the upper ones.

The present numerical results are compared
with the experimental ones reported by Kim et al.
(2004) . In order to carry out this comparison, a
number of attempts have been made for doing
the numerical simulation with the same Reynolds
number as used by them in their experiment. How-

25T 5T

11
IRRRI

60T 69T

:

70T T

i

72T 100T
Fig. 10 Generation and motion of the droplets in the
cross-junction channel (with the standard

parameter values)

L s

Re=0.20 Re=0.29

T

Re=0.28

Gamma=0.01 Gamma=0.1 Gamma=0.3
Re=0.58 Re=058 Re=0.58
Gamma=0.01 Gamma=0.1 Camma=0_3

Fig. 11 Droplet formation phenomenon obtained by
changing the value of Re and I" (The other
parameters follow the standard parameter
set)
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ever, it was not successful, due to the stability
problem and the limited capability of the com-
puter used. Hence, the velocity values are increased
to shorten the computation time. For making the
parameters close enough, Re=0.29 and ['=0.3
are chosen for the calculations to compare with
the experiment data of Kim et al.(2004). Figure
12 pictorially represents this comparison at dif-
ferent time instances. The process of droplet for-
mation in the cross-junction area is clearly de-
picted in these pictures. Figure 12(a) shows the
immediate state after a droplet is fully formed.
Figures 12(b) to 13(d) show the following sta-
ges of droplet formation process. A more round
shaped droplet is noticed in the experimental re-
sults and also the separation occurred more quickly

Fig. 12 Comparison of the present numerical results
at Re=0.29 with the experimental results of
Kim et al.(2004)

in the experiment than in the numeric. The drop-
let obtained by the numerical simulation is not
round enough and need longer distance for sepa-
ration (Fig. 12(d)).

However, the qualitative nature of the result
matches in both cases. The reasons for the quan-
titative disparity between the experimental and
numerical results are elaborated in the following
paragraph.

In the experiments conducted by Kim et al.
(2004), water phase is injected from the horizon-
tal inlet with the flow rate 0.9 [x//min] and simul-
taneously the organic phase (oil) is injected from
the vertical inlets with the flow rate 0.3 [ z//min].
The surface tension value of the oil is 26 X 1073
[N/m] and for water phase it is 45X 107 [N/
m] ; so the relative surface tension is 19X 1073
[N/m]. The dynamic viscosity is 24.4 [mm?/sec]
(at 19.7£0.3C) for the organic phase and 10.7
[mm?/sec] (at 23+2°C) for the water phase. The
width of the horizontal part of the channel is
200 [#m] and the width of the vertical part is 100
[#m]. The height is 100 [ xm] everywhere. With
this data the Reynolds number value works out
to be 0.029. In the numerical simulation we set
the dimensionless parameters as z,=7,=1.67,
—a=b=£=0.04, Un=0.000326, Vi4=0.001956
and I'=0.3. These values correspond to the mean
dynamic viscosity 18 [mm?/sec] and the differ-
ence of surface tension 20X 107% [N/m]. The
Reynolds number value for the numerical anal-
ysis works out to be 0.29, which is incidentally 10
times that used for the experiments. This is done
due to the reason that, the Reynolds number value
is already very small and the computational time
would be quite considerable for the numerical
simulation at Re=0.029. On a good-quality per-
sonal computer with latest specifications, it will
take about a month to get the converged results
for the case of Re=0.029. Also it should be noted
that the numerical results presented in Fig. 13 are
obtained with the two-dimensional formulation.
The basic reason for such difference between two
and three-dimensional configuration may be ex-
plained in terms of the sectional view of the
channel including the droplet.
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Fig. 13 The cross-sectional view of the droplets in

2-D and 3-D cases

Figure 13 demonstrate the fundamental differ-
ence in the shape of the droplet in the sectional
view. For the 2-D case, the droplet takes an in-
finite strip as shown in Fig. 13(a), while for the
3-D case it takes almost a circular shape. The fluid
B flows through the passage between the channel
wall and the droplet surface. The flow rate has
been predetermined as the boundary conditions at
the inlets. Now the average flow velocity through
the passages will be given by the flow rate of fluid
B divided by the cross sectional area. Thus, if the
gap is large, the passage velocity become small,
and vice versa. The passage velocity plays impor-
tant role in the droplet motion, because it will de-
termine the viscous shear force acting on the drop-
let. In fact, for the case of steady state, we expect
a force balance between this shear force and the
net pressure force arising from the pressure dif-
ference between the upstream and downstream
side of the droplet ; that is the pressure difference
exerts the forward motion while the shear force
exerts resistive effect. We may therefore roughly
say that the cross—sectional area should be in the
same level for 2-D and 3-D cases. As can be seen
from Fig. 13(b), the 3-D configuration has four
corners, and, because of the round shape of the
droplet, the gap between channel wall and the drop-
let surface must be larger as the corner is approach-
ed. Therefore we can understand why the droplet
looks larger in 3-D than in 2-D when looked
from side of the channel.

The main purpose of the present work is to
compare our LBM results with experimental data
and make sure that the present method is suitable
for the simulation of droplet formation in cross-
junction microchannel. By the reason explained
above we are satisfied to have a slightly smaller
droplet size for the 2-D case than the 3-D case.

On the other hand it is straightforward to extend
our 2-D code to the 3-D problem after deriving
the corresponding equilibrium functions. The simi-
larity of the results between experimental (Kim et
al., 2004) and present numerical is indicative of
the suitability of the free energy based LBM for
droplet simulation in microchannels.

6. Conclusions

It has been shown by the present analysis that
the free energy model of the LBM can be used for
the simulation of the droplet motion in micro-
channels. At a certain parameter set, the droplets
can be uniformly generated in the junction area of
the two-dimensional cross-junction microchannel.
But in the dimensionless simulation algorithm car-
ried out presently, several parameters are involved
and it is difficult to exercise control over them.
Numerical experiments were also conducted in
order to test the stability and accuracy, under the
fixed boundary conditions. The region in which
the parameters are stable during the simulation is
determined. The accuracy of the present simula-
tion is proved to be of second order. A dimen-
sional transformation was then carried out in or-
der to relate the numerical and experimental data.
This may be useful for implementation with the
other two algorithms of LBM as well.

Various I' and Re values are tried with the
cross—junction microchannel, in which the drop-
let formation was analyzed. The numerical results
obtained indicate that, the shape of the droplet is
remarkably changed with the change of the mo-
bility value, I". When the value of ['is larger, the
shape of the droplet formed in the channel is more
like an ellipse. The Reynolds number value also
can influence the shape of the droplet. At higher
Reynolds numbers, the droplets are smaller in
size. These require further validation by experi-
ments with cross-junction microchannels.

The numerical results obtained during the pre-
sent study are found to be having qualitative simi-
larity with the experimental results reported in li-
terature. However, there are quantitative changes
in both cases due to the different Re values and
the multi-dimensional effect. The two-dimension-
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al simulation carried out presently is quite im-
portant, as it proves the validity of LBM for pre-
dicting the phenomenon of droplet formation in
cross—junction microchannel.
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Appendix A

The local equilibrium distribution functions in
the free energy model described in Section 2 can
be expressed as an expansion at the second order
in the velocity u as follows (e.g. Orlandini et al.,
1995 ; Swift et al., 1996).

oquAo+ Cou2 <A1>

fieq:A1‘|‘BIua€w + Cqu

1=1,2,3,4) (A2
‘|‘D1uau;ieia€,;9‘|‘GI,aﬂeiaeiﬂ ( ) < )

f#=Au+ Bulleen+ Cutd

/=5,6,7,8) (A3
‘|‘DIIUaup€m€ie‘|'Gu,a,e€iaeip <Z ) ( )

g)eq:do+ Cou2 <A4>
gl=a+ biugexn )
=1,2,3,4 AS
+ o+ diwcusenes (i ) (A5)
eq__ )
&i an+bullgexn (i:5,6,7, 8) (Aé)

+centl+ duttaugenes

The parameters in the above equations can be
obtained by solving the Eqns.(3) to (8) given in
Section 2. A suitable choice of the coefficients in
expansions is
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di=4dy (Al6a)
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The derivatives are obtained by the central differ-
ence algorithm. OUther terms can be obtained as

follows
Pox=pot+ £0x90xp (A18)
Pyy=pot k0yporp (A19)
Pry=k0xpdye (A20)
Pupbap=Pix+ Py (A21)
Psc6as=Prx+ Py (A22)

The formula relating the dimensional and di-
mensionless parameters in Section 2 is described
here. This should be useful to carry out corre-
sponding experimental visualizations for the pur-
pose of comparison. The parameters with the su-
perscript * in this Appendix indicates the dimen-
sional reference unit. The total density o plays a
role of the background density and pressure. In
the present study, every node is only occupied by
a single fluid. Hence, po= 05 is set in order to get
a uniform background. Also, o;=p% =0 is used,
where 0 is a temporary value. The non-dimen-
sional density difference ¢ can be defined as the
actual density difference divided by the reference
density. Hence ¢ can be treated as an order
parameter.

*_ %
p=La"0c g £ (A23)

From Eqns. (10), (11) and (14) in Sec. 2, the re-
ference units can be set as follows.
Interface thickness

E*=Jk*/a* (A24)
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Surface tension

0*272? Ji*a* (A25)
Pressure
w=" ¢2+74 o
(A26)

—k* o (Vig) *KT(V*@Z

From Eqns. (A24) to (A26), it can be derived
that ¢* and b* are having the unit [N/m?] where-
as k* is of unit [N]. As a* and b* are in the same
unit as that of stress, it can be scaled as follows :

(a*,b%)=(a,b) [05(c*)?] (A27)

*

Similarly, £* is in the same unit as the force.

Hence,
*=rlos (c*)*(Ax*)?] (A28)
The reference unit of surface tension is
0*2@«/&2 Los (c*)2Ax*] (A29)

The reference unit of the kinematic viscosity is

v =Ax*c* (A30)

Accordingly, the velocity reference unit ¢* is de-

fined as

c*=Ax*/At* (A31)



